Direct Partial Oxidation of Methane to Synthesis Gas by Cerium Oxide

Kiyoshi Otsuka,¹ Ye Wang, Eiyuh Sunada, and Ichiro Yamanaka

Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan

Received May 16, 1997; revised November 20, 1997; accepted November 21, 1997

The gas-solid reaction between methane and cerium oxide (CeO₂) directly produced a synthesis gas with H₂/CO ratio of 2. The addition of Pt black remarkably accelerated the formation rates of H₂ and CO and decreased the activation energy for the production of the synthesis gas. The hydrogen-exchange reaction between CH₄ and CD₄ proceeded remarkably faster than the oxidation of methane with CeO₂ regardless of the presence or absence of Pt. Thus, It was suggested that the cleavage of the C-H bond of methane could not be the rate-determining step. The small kinetic isotopic effect ($k_{\rm H}/k_{\rm D}$ = 1.1 ± 0.1) in methane conversion suggested that the step involving hydrogen such as the recombination or desorption of hydrogen could be the rate-determining step. H₂, CO, and a small amount of CH₄ were observed in temperatureprogrammed desorption experiments for the chemisorbed species generated on CeO₂ during the reaction with methane. This result along with the in situ FT-IR spectroscopic results suggested that the reaction proceeded not through HCHO but probably through carbon intermediate. CO must be produced by the reaction of the carbon with the lattice oxygen of CeO₂. TPD experiments showed that the presence of Pt remarkably decreased the temperature for the desorptions of H₂ and CO. The obvious tailing of H₂ formation in the reaction of CeO₂ with methane pulse also indicated that the recombination or desorption of hydrogen was the rate-determining step. It was suggested that Pt accelerated this step probably through a reverse spillover mechanism. © 1998 Academic Press

INTRODUCTION

The chemical utilization of natural gas, one of the world's abundant resources, to produce basic chemicals is one of the desirable goals in the current chemical industry. However, because of the chemical inertness of methane, the main constituent of natural gas, the chemical transformation of natural gas directly into useful chemicals as industrial starting materials is a great challenge. The conversion of methane to useful chemicals has attracted much attention in recent years and many methods and technologies have been reported. Although the direct conversion of methane to valuable chemicals such as methanol or ethylene is the most fascinating route, no viable process or catalyst has been developed (1–3). At present, the indirect transformation of methane via synthesis gas is still the most competitive process (4). Generally, methane is converted to synthesis gas via steam reforming (5). The synthesis gas then serves as a feedstock of many chemical processes, e.g., Fischer– Tropsch and methanol syntheses. However, as shown in Eq. [1],

$$CH_4 + H_2O \rightarrow CO + 3H_2$$
, $\Delta H = +49.3$ kcal/mol, [1]

because the steam reforming is a highly endothermic reaction, the reaction has to be operated at high temperature (>900°C) and a large amount of energy is consumed to drive this reaction. Furthermore, for Fischer–Tropsch or methanol synthesis,

$$nCO + 2nH_2 \rightarrow C_nH_{2n} + nH_2O,$$
 [2]

$$CO + 2H_2 \rightarrow CH_3OH,$$
 [3]

the desired H_2/CO ratio is 2, thus the H_2/CO ratio of synthesis gas obtained from steam reforming must be adjusted through the reverse shift reaction. By contrast, the partial oxidation of methane to synthesis gas

$$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2, \quad \Delta H = -8.5 \text{ kcal/mol}, \quad [4]$$

is an exothermic reaction and gives a H₂/CO ratio of 2. This reaction may proceed at much moderate temperatures (e.g., $<500^{\circ}$ C). However, the direct oxidation of methane to synthesis gas is very difficult to achieve (6, 7). Actually, most of the reports concerning the partial oxidation method involved the complete oxidation of methane to CO₂ and H₂O followed by the reforming of the remaining CH₄ with H₂O and CO₂ (8–15). As a result, a high temperature (>800°C) is required to obtain high selectivities of H₂ and CO due to the limitation of thermodynamic equilibrium of the reforming reaction at low temperatures. Although several catalysts are active in this partial oxidation of methane, a rapid deactivation of catalysts seems to be a big problem.

Recently, we tested a novel method for the direct conversion of CH_4 to synthesis gas by gas-solid reactions (16).

¹ To whom correspondence should be addressed. Telephone: (+81-3) 5734-2143; Fax: (+81-3)5734-2879; E-mail: kotsuka@o.cc.titech.ac.jp.

FIG. 1. Method for direct conversion of CH_4 to synthesis gas using redox of CeO_2 .

This method is schematically represented in Fig. 1. CH₄ reacts with CeO₂ in step 1, producing H₂ and CO with a ratio of 2. The gas product can directly be used for the Fischer–Tropsch or the methanol synthesis. The reduced cerium oxide (CeO_{2-x}) can be recovered to CeO₂ by the reaction with CO₂ or H₂O in step 2, producing pure CO or H₂ simultaneously. Both CO and H₂ are industrially necessary chemicals for the carbonylation and hydrogenation processes, respectively. Equations [5]–[7] summarize the reactions occurring in both steps.

step 1

$$CeO_2 + xCH_4 \rightarrow CeO_{2-x} + xCO + 2xH_2$$
 [5]

step 2

$$\operatorname{CeO}_{2-x} + x\operatorname{CO}_2 \to \operatorname{CeO}_2 + x\operatorname{CO}$$
 [6]

$$\operatorname{CeO}_{2-x} + x\operatorname{H}_2\operatorname{O} \to \operatorname{CeO}_2 + x\operatorname{H}_2$$
 [7]

The thermodynamic considerations of the reactions in Eqs. [5]–[7] are shown in Fig. 2. The oxidation of CH₄ by CeO_2 is thermodynamically viable at >600°C, while the reaction in step 2 is favorable at <700°C. Thus the two-step method described above can overcome the thermodynamic limitation at ca. 600°C. In previous papers (16), we have demonstrated that H₂ and CO with a ratio of 2 are selectively produced by the reaction of CH₄ with CeO₂ at \geq 700°C. The reduced CeO_{2-x} was recovered to CeO₂ by H_2O with high efficiency in step 2, producing H_2 at 400– 600°C. Compared to the reaction in step 2, the reaction in step 1, i.e., the reaction between CH₄ and CeO₂, needed considerably higher temperatures than 600°C because of lower reaction rate. Therefore, in order to increase the efficiency of this two-step method, the reaction in step 1 needs to be accelerated. The main purpose of this work is to find a suitable catalyst for the acceleration of the rate of reaction of CH₄ with CeO₂ and to clarify its catalytic function. The reaction mechanism for the formation of H₂ and CO from CH₄ is also discussed on the bases of kinetic, FT-IR, TPD, and pulse studies.

EXPERIMENTAL

Materials

The CeO₂ (purity >99.9%) purchased from Wako Chemical Industry Co. was used for the reaction. The BET surface area determined by N₂ adsorption was 6.3 m²/g. Many metals and oxides used as catalysts or additives were thoroughly mixed with CeO₂ using an agate mortar for 1 h. The samples with the amount of the additives of 8 mol% in metal element basis for oxide additives and of 1 wt% for metal black additives were selected as representatives in this paper, because 5 and 25 mol% for the former and 0.5 wt% for the latter showed similar enhancing or retarding effects as their essential features of the effects.

Reactions

The gas-solid reaction between CH_4 and CeO_2 was carried out using a conventional fixed bed quartz reactor operated at atmospheric pressure. The inner diameter of the reactor was 8 mm. For a standard reaction, 3.0 g of CeO_2 or of the mixture of CeO_2 and catalyst was loaded in the reactor. The granules with sizes of 20–40 mesh were used. The length of the CeO_2 bed (both with and without catalyst) was ca. 4 cm. The reactor was set in an electric furnace ca. 40 cm long and a thermal homogeneous zone of

FIG. 2. Thermodynamic calculations for the reactions in steps 1 and 2. The calculation was based on the data in Ref. (20).

ca. 8 cm. The CeO_2 with or without catalyst was pretreated in an O_2 flow diluted with Ar ($P(O_2) = 50.5$ kPa, total flow rate = $120 \text{ cm}^3/\text{min}$) at 700° C for 1 h before the reaction. After the reactor was purged with pure Ar (99.99%, flow rate = $120 \text{ cm}^3/\text{min}$) for 1 h, the reaction was started by passing a CH₄ flow diluted with Ar ($P(CH_4) = 50.5$ kPa, total flow rate = $120 \text{ cm}^3/\text{min}$). The products were analyzed by a TCD equipped on-line gas chromatograph with an interval of ca. 10 min. An active carbon column (3 m) was used for the analysis of H₂, CO, and CH₄. H₂O and CO₂ were simultaneously analyzed by a Gaschropak-54 (3 m) column. The line between the exit of the reactor and gas chromatograph was heated to 110° C to prevent the condensation of H₂O. Because CeO₂ is the only oxygen source, the degree of reduction of CeO₂ by CH₄ could be evaluated from the total amount of the oxygen-containing products, i.e., CO, CO₂, and H_2O , as follows:

degree of reduction =

$$\frac{[\text{CO}] + 2[\text{CO}_2] + [\text{H}_2\text{O}] \text{ (mol)}}{2[\text{CeO}_2] \text{ (mol)}} \times 100 \text{ (\%)}$$

The recovery of the reduced cerium oxide (step 2) after the reaction with CH₄ (step 1) was performed by reaction with CO₂ or H₂O. CO₂ or H₂O gas diluted with Ar (CO₂/Ar = 1/7 or H₂O/Ar = 1/40) at a flow rate of 40 cm³/min was introduced to react with CeO_{2-x} after the reactor was purged with Ar. The recovery of the lattice oxygen of cerium oxide was calculated on the basis of the amount of CO or H₂ produced as follows:

 $\frac{\text{amount of CO or } H_2 \text{ produced in step 2}}{\text{amount of oxygen removed from CeO}_2 \text{ in step 1}} \times 100 \,(\%).$

FT-IR Measurement

For IR-transmission measurement, CeO₂ or Pt-added CeO₂ was pressed into a self-supporting water. The quartzmade IR cell equipped with two NaCl windows was connected to a closed gas-circulation system linked to a vacuum line. The sample in the cell could be heated to 1000 K. The IR experiments were carried out with a Fourier-transform infrared spectrometer (JASCO FT/IR-7000) equipped with an MCT detector cooled with liquid nitrogen. All the spectra were recorded after the sample was cooled down to room temperature with a cooling water pipeline surrounding the IR cell.

Temperature-Programmed Desorption (TPD) Measurement

TPD measurements of the chemisorbed species were performed for CeO_2 and Pt-added CeO_2 after the contact with CH_4 at 650°C. After the samples being cooled down to room temperature, the gas phase was removed by evacuation to 10^{-6} Torr. TPD measurement was then carried out by increasing the temperature at a rate of 4°C/min. The desorbed products were monitored by a quadrupole mass spectrometer.

CH_4 - CD_4 Exchange Reaction and Isotope Effect (k_H/k_D) Measurement

The isotope exchange reaction between CH₄ and CD₄ and the measurement of the isotope effect $(k_{\rm H}/k_{\rm D})$ on the basis of their rates of conversion were carried out using a closed gas-circulation system made of Pyrex glass. The CeO₂ or Pt-added CeO₂ powder was placed in a U-shaped quartz reactor (i.d. 4 mm) which was inserted in an electric furnace. The gases were circulated by a circulation pump during the reaction. The system was connected through a leak valve to a quadrupole mass spectrometer and to a gas chromatograph for the analysis of the products from methane.

Pulse Reaction

The same apparatus for the flow reaction described above was used for pulse reactions. For the pulse reactions, a CH_4 pulse carried with Ar was introduced to the fixed bed reactor loaded with CeO_2 . The exit pulse including products were directly passed through an active carbon column, and the responses of the CH_4 and the products were recorded by an on-line gas chromatograph.

RESULTS

Gas-Solid Reaction between CH₄ and CeO₂

Figure 3 represents typical kinetic curves of the products in the reaction of CH_4 with CeO_2 at 700°C. H_2 and CO_2 were the overwhelming products, although H_2O and CO_2 were observed at the very early stage of the reaction. The ratio of H_2 and CO was almost kept at 2.0 after 20 min of reaction. As described earlier, such a syngas with H_2/CO ratio of 2 could directly be used for the Fischer–Tropsch or the methanol synthesis.

The formation of H_2 and CO under the conditions of Fig. 3 lasted for ca. 400 min. The calculation showed that the degree of reduction of CeO₂ was 21% after the reaction, comparable to the value (25%) by assuming that CeO₂ is completely reduced to Ce₂O₃. Such an amount of oxygen consumed obviously cannot be ascribed to the surface oxygen only, because the amount of oxygen at the first surface layer on the basis of BET surface area (6.3 m² g⁻¹) corresponds to roughly 5% of the consumed oxygen in step 1. Therefore, it is clear that the bulk lattice oxygen of CeO₂ must participate in the oxidation of CH₄.

It should be noted in Fig. 3 that the formation of H_2 and CO continued in the absence of H_2O and CO_2 in the gas phase after 30 min. The presence of gaseous H_2O and CO_2

FIG. 3. Kinetic curves for the reaction of CH₄ with CeO₂: (a) H₂; (b) CO; (c) H₂O; (d) CO₂. Reaction conditions: $T = 700^{\circ}$ C, $P(CH_4) = P(Ar) = 50.5$ kPa, total flow rate = 120 mL/min, CeO₂ = 3.0 g.

at the early stage of the reaction did not particularly accelerate the formation of H₂ and CO. In order to understand the scheme for the formation of H₂ and CO, the reforming reactions of CH₄ with CO₂ were carried out on CeO₂. The reforming reaction of CH₄ with CO₂ (initial $P(CH_4) = 50 \text{ kPa}$, $P(CO_2) = 5 \text{ kPa}$, and CeO₂ = 1.0 g) always produced H₂O, and the H₂/CO ratio never did exceed 1.0 at temperatures of 600–800°C. The reforming reaction of CO₂ and never gave the H₂/CO ratio of 2. Therefore, we believe that the H₂ and CO in Fig. 3 were not the reforming products but rather that the products formed directly from the reaction of CH₄ and CeO₂.

Carbon deposition during the reaction is an important aspect in carrying out the reaction smoothly. Thus, we measured the total amount of carbonaceous species deposited on cerium oxide after the reaction with CH₄. After the reaction, the reactor was purged with Ar, and then a pure O₂ flow (120 cm³/min) was introduced to burn out the carbon deposited on cerium oxide. The CO and CO₂ produced were quantified by gas chromatograph and were used to calculate the amount carbon deposit. Such measurements were done by stopping the reaction of CH₄ with CeO₂ at different reaction times and thus at different degrees of CeO₂ reduction. As indicated in the previous paper (16), almost no carbon deposit was observed at a degree of reduction lower than 10%. However, the carbon deposit increased sharply when the degree of reduction was increased above 10%. Therefore, we have already claimed that it is better to keep the degree of reduction below 10% to avoid the carbon deposit in step 1 and to guarantee the repeated use of the cerium oxide in steps 1 and 2.

Oxidation of CeO_{2-x} with CO_2 and H_2O

The reduced cerium oxide (CeO_{2-x}) after the experiment in Fig. 3 (the degree of reduction was 8%) was purged with Ar and subjected to the reaction with CO₂ or H₂O. Figure 4 shows the formation rates of CO and H₂ during the reactions with CO₂ and H₂O at 450 and 550°C, respectively. Both reactions proceeded smoothly at such temperatures and finished after 20 and 40 min, respectively. The calculations showed that the degrees of recovery of CeO₂ reached 82 and 90%, respectively.

Catalyst for the Reaction between CH₄ and CeO₂

The results described above suggest that the reaction in step 2 proceeds smoothly and fast as compared with the reaction in step 1. In order to increase the efficiency of this two-step method, the reaction in step 1, i.e., the reaction between CH_4 and CeO_2 , should be accelerated. Thus, many additives were tested for the oxidation of CH_4 with CeO_2 . The formation rates of H_2 and CO (average rates in the initial 20 min) in the presence of different additives are shown in Fig. 5. It is known that the addition of alkaline earth metal oxides such as CaO and SrO results in the formation of solid solutions with CeO_2 , generating lattice oxygen

FIG. 4. Production of CO and H_2 during the reactions of the reduced cerium oxide with CO_2 (A) and H_2O (B).

FIG. 5. Effect of additives on the formation rate of H_2 and CO.

defects (17). The diffusion of lattice oxygen anion could thus be accelerated. However, the formation rates of both H₂ and CO were not appreciably enhanced by the addition of these alkaline earth metal oxides as shown in Fig. 5. Therefore, the diffusion of lattice oxygen might not be a rate-determining step in the reaction of CH₄ with CeO₂. The addition of alkali metal oxides, i.e., Li₂O, Na₂O, and K_2O remarkably decreased the formation rates of H_2 and CO. On the other hand, the presence of Pt black or Pd black obviously accelerated the formation of H₂ and CO. Figure 5 shows that the formation rate of H₂ is highest in the presence of Pd black. However, the H₂/CO ratio obtained was ca. 6.0, which notably exceeded the stoichiometric ratio of H_2/CO (= 2.0) expected in Eq. [5]. This high H_2/CO ratio indicates the deposit of carbon on Pd-added CeO2. On the other hand, in the case of Pt, the ratio of H_2/CO was 2.05. Thus, Pt accelerated the stoichiometric reaction of Eq. [5] without depositing carbon.

The reaction of CH₄ with Pt black (30 mg) without CeO₂ produced only a small amount of H₂ (ca. 1% of that in the presence of CeO₂). The formation of CO was not observed at all. Therefore, Pt functioned as a catalyst for the reaction of CH₄ with CeO₂.

The formation rates of CO at different reaction temperatures for both CeO₂ and Pt-added CeO₂ were measured previously (16). The formation rate of CO was increased in the presence of Pt at all the temperatures investigated. It should be noted that the ratio of H₂/CO was always 2.0 ± 0.1 irrespective of the reaction temperature. The apparent activation energy for the formation of CO was decreased from 160 to 68 kJ/mol due to the presence of Pt. This result strongly supports the idea that Pt black has a very notable catalytic function on the formation of CO and H₂.

The degrees of reduction of CeO_2 after the reaction with CH_4 for 2 h at different temperatures were plotted in Fig. 6.

Pt black enhanced the degrees of reduction of CeO_2 at all the reaction temperatures, and such enhancement became more notable at lower temperatures. The oxidation of CH_4 with CeO_2 became notable at ca. 550°C in the presence of Pt catalyst, while temperatures $\geq 650°C$ were required when the catalyst was absent.

In Situ FT-IR Measurement

As described above, it was demonstrated that H2 and CO with a ratio of 2 could be selectively produced from the gassolid reaction of CH₄ with CeO₂, and this reaction was accelerated by Pt catalyst. The elucidation of the mechanism for the formation of H₂ and CO is important in understanding the role of Pt. One possibility is that H₂ and CO may be formed through intermediates such as absorbed CH₃O or HCHO. Thus. in situ FT-IR measurements have been carried out to investigate the adsorbed species. Figure 7 shows the spectra obtained after the reaction of CH_4 (5.3 kPa) with Pt-added CeO_2 (wafer with a diameter of 3 cm and a weight of 80 mg) in IR cell at 550°C for 2 h. The spectra were recorded within 10 min after the sample was quenched to room temperature. Difference spectra are shown here, in which the absorbance arising from the Pt-CeO₂ sample itself is subtracted. No obvious absorption peak is observed in the region of OH and C-H stretching vibrations (3500- 2500 cm^{-1}), except for the stretching of C-H ascribed to gaseous CH_4 (sharp peak at 3016 cm⁻¹). This indicates that the species comprising C-H and O-H due to the adsorbed HCHO and CH₃OH or due to their precursors or derivates may not be formed on the surface of Pt-CeO₂ during the reaction. Furthermore, the absorption bands ascribed to the stretching of C=O in HCHO, which should appear at 1650–1800 cm^{-1} , were not observed as shown in Fig. 7B.

On the other hand, four absorption peaks at 1576, 1296, 1030, and 860 cm^{-1} were observed, and these peaks could

FIG. 6. Dependence of the reduction degree of CeO_2 on the reaction temperature: (a) CeO_2 ; (b) Pt–CeO₂. Reaction conditions: $P(CH_4) = P(Ar) = 50.5$ kPa; total flow rate = 120 mL/min; $CeO_2 = 3.0$ g.

Wavenumber /cm⁻¹

FIG. 7. FT-IR spectra recorded after the reaction of CH_4 with Pt-added CeO₂.

be ascribed to a bidentate-type carbonate with a structure as below (18).

It is very usual that carbonate species exists on the surface of cerium oxide because of the basicity of cerium oxide. However, whether there is a correlation between the carbonate species and the formation of CO is unclear at this moment.

As a conclusion of IR measurements, the absorption bands which could be assigned to CH_x , methoxide (CH_3O), and HCHO species were not observed. Although we cannot exclude the situation that the lifetime of these species is too short or the steady-state concentration of these species is too low to be detected by FT-IR spectroscopy, this result more likely indicates that the reaction does not proceed through these intermediates.

TPD Measurement

To obtain further information about the possible reaction intermediates and to understand the effect of Pt on the formation of the products, the desorption features of the chemisorbed species on CeO₂ with and without Pt were investigated by TPD method. The experiments were carried out in the following sequences. Before TPD measurements, the reaction of CeO₂ with CH₄ in the presence and absence of Pt had been performed at 650° C for 1 h, the reactor was then cooled down to room temperature within 10 min. The TPD measurements for the chemisorbed species on CeO_2 with and without Pt were then carried out after the gas phase in the reactor had been removed by evacuation to ca. 10^{-6} Torr. The heating rate used for TPD measurement was 4°C/min. The products desorbed were monitored by a mass spectrometer.

The result for CeO₂ was shown in Fig. 8A, only the desorptions of H_2 and CO along with a trace of CH₄ were observed. The desorptions of both H_2 and CO occurred almost simultaneously and started at ca. 250°C. The fact that HCHO was not observed in this experiment supports the speculation that the reaction does not proceed through a HCHO intermediate.

The TPD results in the presence of Pt black are shown in Fig. 8B. In this case, the main desorption products were also H_2 and CO. However, the commencement temperature for the desorption of both H_2 and CO was obviously lowered due to the presence of Pt black. It should be noted that no CO was observed and only a very small amount of H_2 (<1% of the total H_2 desorbed in Fig. 8B) was desorbed when only Pt was used. Thus, Pt lowered the temperature for the desorption of H_2 and CO which had been adsorbed on cerium oxide. Besides H_2 and CO, the desorption of CH₄ was also observed and its amount was increased in the presence of Pt. The adsorption of CH₄ on CeO₂ was studied in detail by Li and Xin using FT-IR spectroscopy (19). They reported

FIG. 8. TPD curves after the reaction of CH_4 with CeO_2 (A) and $Pt-CeO_2$ (B): (a) H_2 ; (b) CO; (c) CH_4 .

that CH₄ could only be adsorbed on CeO₂ at temperatures lower than -15° C. Thus, it is unlikely that the CH₄ desorbed at 150–300°C in Fig. 8 results from the adsorbed CH₄ itself on CeO₂. Moreover, since the peak temperature for the desorption of CH₄ was very close to those of H₂ and CO, we speculate that this CH₄ arises through the hydrogenation of adsorbed carbon species, a probable reaction intermediate. Thus, it is likely that the adsorbed carbon and hydrogen atoms may serve as the intermediates for the formation of H₂ and CO.

CH₄-CD₄ Exchange Reaction

Hydrogen exchange reaction between CH_4 and CD_4 was carried out to obtain information about the dissociation of C–H bond of CH₄. Figure 9 shows the result of the CH₄–CD₄ exchange reaction on CeO₂ at 650°C. The reaction was carried out using a closed gas-circulation system. The initial CH₄/CD₄ ratio was 12/13. Both CH₄ and CD₄ concentrations decreased steeply with reaction time at early stage of the reaction (<10 min). Simultaneously, the hydrogenexchanged products, i.e., CH₃D, CHD₃, and CH₂D₂, were formed and their concentrations increased along the reaction time. However, their concentrations did not change appreciably after 20 min.

A quantitative calculation showed that at least 149 μ mol of methane molecules exchanged their hydrogen and deuterium during CH₄-CD₄ reaction in the first 10 min on CeO₂ without Pt. However, the amount of methane converted to CO was only 2 μ mol under such reaction conditions. This result means that the CH₄-CD₄ exchange reaction proceeds much more rapidly than the oxidation of methane on CeO₂. This is also true of the case in the presence of Pt. Thus, the cleavage of C-H bond of methane could not be the rate-determining step in the overall oxidation of CH₄ with CeO₂.

FIG. 9. Results for the hydrogen exchange between CH₄ and CD₄ over CeO₂: (\bigcirc) CH₄; (\bigtriangledown) CD₄; (\blacksquare) CH₃D; (\blacktriangle) CHD₃; (\blacklozenge) CH₂D₂. Reaction conditions: CeO₂ = 3.0 g, *T* = 650°C, *P*(CH₄) = *P*(CD₄) = 2.7 kPa.

FIG. 10. Conversion of CH₄ and CD₄ versus reaction time: (a) CH₄; (b) CD₄. Reaction conditions: CeO₂=3.0 g, $T=650^{\circ}$ C, $P(CH_4) = P(CD_4) = 2.7$ kPa.

Isotope Effect in the Oxidation of Methane

In order to get further knowledge about the rate-determining step in the overall reaction of methane with CeO₂, the isotope effect ($k_{\rm H}/k_{\rm D}$) was measured by comparing the conversion rates of CH₄ and CD₄. The reactions of CH₄ and CD₄ with CeO₂ were performed using a closed gascirculation system under the same conditions. The conversions of CH₄ and CD₄ versus reaction time are shown in Fig. 10.

Similar to the results obtained in the reactions using the gas flow system described earlier, the products for these experiments were also mainly CO and H₂ or D₂. The slopes of the curves at the initial stage of the reaction (<30 min) in Fig. 10 showed that the isotope effect (k_H/k_D) for the conversion of methane was 1.1 ± 0.1 . This low isotope effect may not contradict the suggestion obtained from the CH₄-CD₄ exchange reaction, i.e., the cleavage of the C-H bond is not the rate-determining step in the overall reaction of methane into H₂ and CO. We consider that this low isotope effect is caused by other elementary steps involving hydrogen, probably the formation of H₂ through the recombination of H atoms or the desorption of H₂.

Pulse Reaction

The reaction of CeO₂ with CH₄ pulses was carried out to get further information about the mechanism for the reaction between CeO₂ and CH₄ and the formation of H₂ and CO. The transient responses of the product pulses were shown in Fig. 11. For the first CH₄ pulse, the formation of CO₂ was observed. The formation of CO₂ may be a result of the reaction of CH₄ with the active oxygen on CeO₂ surface. However, no CO was observed for the first to third CH₄ pulse reactions. The formation of CO was observed

FIG. 11. Transient responses for the reaction of CeO₂ with CH₄ pulse. Reaction conditions: CeO₂ = 3.0 g, $T = 700^{\circ}$ C, CH₄ pulse size 50 μ L.

from the fourth pulse of CH_4 and the H_2 peak was sharply increased simultaneously. It should be noted that the sensitivity of the TCD detector was 10 times higher for H_2 than for CO_2 or CO. Thus, the observed H_2 peak was much larger than that of CO. The experimental results mentioned above imply that the reduced sites on CeO_2 , i.e., the sites with Ce^{3+} and oxygen anion vacancies which are generated in the reactions of first to third CH_4 pulses, may be important for the selective formation of H_2 and CO.

Another experimental fact which should be noted is the remarkable tailing of the H_2 peak observed from the fourth CH_4 pulse. However, such notable tailing was not observed for CH_4 and CO peaks. Moreover, no tailing of H_2 peak was observed when a H_2/CO pulse with a ratio of 2/1 was injected to the reactor in the absence of CeO_2 (the last response peaks in Fig. 11). These observations imply that the desorption of H_2 from a slightly reduced cerium oxide is a slow step. Thus we speculate that the recombination of H atoms or the desorption of H_2 could be the rate-determining step in the formation of synthesis gas.

DISCUSSION

As described above, we have reported a novel method for the selective conversion of CH_4 to H_2 and CO with a ratio of 2 by gas–solid reaction between CH_4 and CeO_2 in the absence of gaseous O_2 . Here, it should be stressed again that CeO_2 acts as not a catalyst but an oxidant for the oxidation of CH₄. The formation rate of H₂ and CO can be remarkably enhanced by adding Pt as a catalyst. The CeO_{2-x} after the reaction with CH₄ (step 1) can be recovered by reactions with CO₂ and H₂O (step 2), producing pure CO and H₂, respectively. The separation of the two steps is important, since the catalytic reaction of CH₄ with CO₂ or H₂O on CeO₂ did not give H₂ and CO with a ratio of 2 without producing H₂O or CO₂.

The FT-IR experiments suggested that the formation of H_2 and CO would not proceed through intermediates such as adsorbed CH₃OH (or CH₃O) and HCHO. The TPD measurement for the chemisorbed species after the reaction of CH₄ with CeO₂ suggested that adsorbed carbonaceous species and hydrogen atoms were probably the reaction intermediates. Thus, we speculate that the reaction may proceed as follows:

$$CH_4 \rightarrow C(a) + 4H(a),$$
 [8]

$$4H(a) \to 2H_2, \qquad [9]$$

$$xC(a) + CeO_2 \rightarrow xCO + CeO_{2-x}.$$
 [10]

A further detailed reaction mechanism which we have in mind is shown in Fig. 12. As suggested by the results of the pulse reaction experiments (Fig. 11), the reduced surface sites, i.e., Ce^{3+} and oxygen vacancy, must be responsible for the activation of CH₄ for the selective production

FIG. 12. Reaction mechanism for the formation of H_2 and CO from the reaction of CH₄ with CeO₂; (\Box) oxygen vacancy.

of H₂ and CO. The carbon and hydrogen atoms thus formed might be adsorbed in the vacancies near Ce³⁺. The rapid CH₄-CD₄ exchange reaction and the small isotope effect $(k_{\rm H}/k_{\rm D} = 1.1 \pm 0.1 \text{ at } 650^{\circ}\text{C})$ suggested that the cleavage of CH₄ on the Ce³⁺ sites was not the rate-determining step.

CeO₂ is the only oxygen source in the oxidation of CH₄. The degree of reduction of cerium oxide after a complete reaction with CH₄ (until neither H₂ nor CO formation was observed) reached 21%, suggesting that almost all the CeO₂ was reduced to Ce₂O₃. Obviously, such a large amount oxygen consumed cannot be ascribed only to the surface oxygen of CeO₂. Thus, the lattice oxygen must be responsible for the formation of CO. The experimental fact that the improvement of the diffusion of the lattice oxygen does not increase the formation rates of H₂ and CO allows us to speculate that the diffusion of lattice oxygen is not the rate-determining step in the overall reactions.

The low isotope effect $(k_{\rm H}/k_{\rm D} = 1.1 \pm 0.1)$ is consistent with the results of CH₄-CD₄ exchange reactions that the cleavage of CH₄ is not the rate-determining step. This low isotope effect further indicates that another elementary step involving hydrogen atoms must control the reaction. The obvious tailing of H₂ in the transient response pulse reaction suggests that the step for the formation of H₂, which involves the recombination of hydrogen atoms and the desorption of H₂, is a slow step. The presence of Pt accelerates this step as shown by the TPD measurement. We speculate that this enhancement may be achieved by a reverse spillover mechanism, viz., the spillover of H atoms trapped in the surroundings of Ce³⁺ to Pt sites where the recombination of H atoms or the desorption of H₂ must occur more facilely.

ACKNOWLEDGMENTS

Part of this work has been carried out as a research project of Japan Petroleum Institute commissioned by the Petroleum Energy Center with the subsidy of the Ministry of International Trade and Industry.

REFERENCES

- 1. Brown, M. J., and Parkyns, N. D., Catal. Today 8, 305 (1991).
- 2. Krylov, O. V., Catal. Today 18, 209 (1993).
- 3. Crabtree, R. H., Chem. Rev. 95, 987 (1995).
- 4. Fox, J. M., III, Catal. Rev.-Sci. Eng. 35, 169 (1993).
- 5. Van Hook, J. P., Catal. Rev.-Sci. Eng. 21, 1 (1980).
- 6. Hickman, D. A., and Schmidt, L. D., J. Catal. 138, 267 (1992).
- 7. Hickman, D. A., and Schmidt, L. D., Science 259, 343 (1993).
- Ashcroft, A. T., Cheetham, A. K., Foord, J. S., Green, M. L. H., Grey, C. P., Murrel, A. J., and Vernon, P. D. F., *Nature* 344, 319 (1990).
- Jones, R. H., Ashcroft, A. T., Waller, D., Cheetham, A. K., and Thomas, J. M., *Catal. Lett.* 8, 169 (1991).
- Vernon, P. D. F., Green, M. L. H., Cheetham, A. K., and Ashcroft, A. T., *Catal. Today* 13, 417 (1992).
- Dissanayake, D., Rosynek, M. P., Kharas, K. C. C., and Lunsford, J. H., J. Catal. 132, 117 (1991).
- 12. Dissanayake, D., Rosynak, M. P., and Lunsford, J. H., *J. Phys. Chem.* 97, 3644 (1993).
- 13. Nakamura, J., Umeda, S., Kubushiro, K., and Kunimori, K., and Uchijima, T., J. Jpn. Pet. Inst. 36, 97 (1993).
- Choudhary, V. R., Rajput, A. M., and Prabhakar, B., J. Catal. 139, 326 (1993).
- Vermeiren, W. J. M., Blomsma, E., and Jacobs, P. A., *Catal. Today* 13, 427 (1992).
- Otsuka, K., Ushiyama, T., and Yamanaka, I., *Chem. Lett.*, 1517 (1993);
 Otsuka, K., Sunada, E., Ushiyama, T., and Yamanaka, I., *Stud. Surf. Sci. Catal.* 107, 531 (1997).
- 17. Etsell, T. H., and Flengas, S. N., Chem. Rev. 70, 339 (1970).
- Bozon-Verduraz, F., and Bensalem, A., J. Chem. Soc., Faraday Trans. 90, 653 (1994).
- 19. Li, C., and Xin, Q., J. Phys. Chem. 96, 7714 (1992).
- MALT2, The Japan Society of Calorimetry and Thermodynamic Analysis, Tokyo, 1993.